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Rapid climate warming in the tundra biome has been linked1

to increasing shrub dominance1–4. Shrub expansion can modify2

climate by altering surface albedo, energy and water bal-3

ance, and permafrost2,5–8, yet the drivers of shrub growth4

remain poorly understood.Dendroecological data consisting of5

multi-decadal time series of annual shrub growth provide an6

underused resource to explore climate–growth relationships.7

Here, we analyse circumpolar data from 37 arctic and alpine8

sites in 9 countries, including 25
Q.1

species, and ⇠42,0009

annual growth records from 1,821 individuals. Our analyses10

demonstrate that the sensitivity of shrub growth to climate11

was:Q.2 1) heterogeneous, with European sites showing greater12

summer temperature sensitivity than North American sites,13

and 2) higher at sites with greater soil moisture and for taller14

shrubs (for example, alders and willows) growing at their15

northern or upper elevational range edges. Across latitude,16

climate sensitivity of growth was greatest at the boundary17

between the low and highArctic, where permafrost is thawing4
18

and most of the global permafrost soil carbon pool is stored9.19

The observed variation in climate–shrub growth relationships 20

should be incorporated into Earth system models to improve 21

future projections of climate change impacts across the 22

tundra biome. 23

The Arctic is warming more rapidly than lower latitudes owing 24

to climate amplification involving temperature, water vapour, 25

albedo and sea ice feedbacks5,7. Tundra ecosystems are thus 26

predicted to respond more rapidly to climate change than other 27

terrestrial ecosystems4. The tundra biome spans arctic and alpine 28

regions that have similar plant species pools and mean climates, 29

yet vary in topography, seasonality, land cover and glaciation 30

history. Concurrent with the recent high-latitude warming trend7, 31

repeat photography and vegetation surveys have shown widespread 32

expansion of shrubs1–3, characterized by increased canopy cover, 33

height and abundance. However, climate warming7 and shrub 34

increase2,10 have not occurred at all sites. Models predict that 35

warming of 2–10 �C (ref. 11) Q.3could convert asmuch as half of current 36

tundra to ‘shrubland’ by the end of the twenty-first century8, but 37

the uniformity of the frequently cited relationship between climate 38
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Figure 1 | Climate sensitivity across the tundra biome. The size of the circle
shows the strength of the summer temperature sensitivity as indicated by
the delta AIC. The colour of the circles indicates the direction of the
relationship with summer temperature variables, with red circles indicating
sites that have a positive relationship, blue circles indicating sites with a
negative relationship, purple circles indicating sites with slopes near zero,
black circles indicating sites where the best model was not a summer
temperature model and crosses representing genus-by-site combinations
where climate sensitivity was not indicated by the model comparison
analysis. Locations with multiple circles indicate study sites where multiple
species were sampled. The coloured regions indicate the bioclimatic zones
of the Circumpolar Arctic Vegetation Map (CAVM. 2003.
http://www.geobotany.uaf.edu/cavm).

change and tundra shrub expansion5,12–15 has yet to be quantified1

across the tundra biome as a whole.

Q.4

2

Shrubs are woody perennial species that live from decades to3

centuries. In seasonal climates, they form annual growth rings,4

allowing analysis of radial growth over time.Many shrub species are5

widely distributed across the tundra biome and are often dominant,6

owing to their canopy height, longevity and ability to outcompete7

low-growing plants.With wide geographic distributions and annual8

growth records, shrubs are ideally suited for quantifying tundra9

vegetation responses to climate warming. Assembled annual growth10

records from sites across the tundra biome provide a unique11

opportunity to test competing hypotheses of shrub responses to12

climate change over the past half-century.13

Previous ecological monitoring and dendroecological studies14

have identified temperature, growing season length, summer pre-15

cipitation and snow cover as important variables explaining spatial16

and interspecific variation in shrub growth1,10,13,14,16–18. However,17

there is a lack of consensus regarding which climate variables best18

explain growth across all tundra ecosystems. We therefore do not19

know whether climate–growth relationships are consistent in direc-20

tion and magnitude among species and among sites where plant21

composition, climate trends and environmental parameters di�er.22

At present, most large-scale vegetation models assume high climate23

sensitivity and a uniform growth response to warming among shrub24

species and populations8,19.Q.5 These models predict pronounced posi-25

tive climate feedbacks as a result of tundra vegetation change5,8. Yet,26

if shrub growth responses to climate are constrained, then changes27

in shrub dominance should vary regionally, and feedbacks across the 28

tundra biome as a whole could be weaker than predicted at present. 29

We quantified the climate sensitivity of shrub growth—that 30

is, the strength of relationship between annual growth and 31

climate variables (including temperature and precipitation, specific 32

calculations described below)—to test four hypotheses: 1) The 33

greatest climate sensitivity of growth should occur at northern or 34

high-elevation range edges if plant performance is more climate 35

limited in peripheral than central populations20–22. 2) Climate 36

sensitivity of growth should be greatest in the centre of species 37

distributions if populations growingundermore stressful conditions 38

at range edges have evolved conservative life history strategies 39

limiting their ability to respond when conditions improve23. 40

3) Climate sensitivity of growth should vary along gradients if the 41

response of species to warming is limited by other factors, such as 42

soil nutrients, soil moisture or biotic interactions21. Alternatively, 43

4) climate sensitivity of growth could be uniform. 44

We synthesized existing and new time series of shrub 45

growth across the tundra biome. Our data set extends beyond 46

previous analyses by including sites across the circumpolar Arctic, 47

comprising dwarf, low and tall canopy species, and encompassing 60 48

years of annual-resolution shrub growth.We used crossdated, radial 49

and axial growth measurements spanning 1950–2010, collected 50

at 37 sites, and for 25 shrub species in 8 genera. We analysed 51

climate–growth relationships for 46 genus-by-site combinations 52

using linear mixed models to estimate climate sensitivity, with 33 53

candidate climate models as predictors of shrub growth increments. 54

All data were normalized before analysis and model terms included 55

seasonal temperatures and precipitation as fixed e�ects and year as 56

a random e�ect (see Supplementary Information). 57

We calculated four complementary indices of climate sensitivity 58

from the mixed model analysis for each genus-by-site combination: 59

1) the di�erence in AIC between the best climate model and a 60

null model Q.6(delta AIC), 2) the R2 for the best climate model, 3) 61

the absolute value of the slope of the relationship between growth 62

and summer temperature and 4) the proportion of individuals that 63

had significant linear relationships between growth and summer 64

temperature (the best predictor from the overall analysis). We 65

assessed these indices of climate sensitivity across abiotic (wet 66

day frequency, soil moisture, growing season length) and biotic 67

gradients (distance to range edge and species-level maximum 68

canopy height, see Supplementary Information). In Fig. 1, we report 69

both delta AIC and model slopes to illustrate spatial variation in 70

climate sensitivity (all indices reported in Supplementary Fig. 12). 71

In Fig. 2 we report the percentage of models indicating climate 72

(temperature or precipitation) sensitivity in the model comparison 73

analysis; Fig. 3 shows relationships between all four climate- 74

sensitivity indices across di�erent gradients. 75

Climate–growth relationships were not uniform across the 76

tundra biome (Fig. 1), contrasting with the common assumption 77

used in arctic vegetation models19. Overall climate sensitivity was 78

high: 76% (35/46) genus-by-site combinations exhibited climate- 79

sensitive growth (Supplementary Table 5). Summer temperature 80

variables best explained variation in shrub growth across the 81

46 genus-by-site combinations and 33 climate models (Fig. 2), 82

with 46% (21/46) genus-by-site combinations showing positive 83

growth–summer temperature relationships and 17% (8/46) showing 84

negative relationships (Fig. 1, Supplementary Table 5). Individual- 85

level climate sensitivity of growth varied considerably: 5–97% 86

of individuals at each site and ⇠36% of all individuals showed 87

significant summer temperature sensitivity (Supplementary 88

Table 5). A moving window analysis demonstrated the relatively 89

consistent climate sensitivity of shrub growth over time, despite the 90

increase in sample size in recent years (Supplementary Fig. 13). 91

Climate sensitivity of shrub growth was highly heterogeneous 92

across the tundra biome (Fig. 1). Climate sensitivity was greatest 93
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Figure 2 | Comparison of climate models. Summer temperature models
were more frequently climate sensitive than other temperature or
precipitation models in the model comparison analysis of 46 genus-by-site
combinations and 33 climate models (Supplementary Table 4). The shaded
colouring indicates the percentage of models that were considered climate
sensitive for each of the four categories of climate variables for each of the
genus-by-site combinations with a di�erence in AIC value of greater than 2
between the given climate model and the null model for all one-parameter
models in the model comparison analysis.

in the northwest Russian Arctic and northern Europe,

Q.7

and more1

heterogeneous among sites in North America (Fig. 1), where many2

sites exhibited weak relationships between growth and summer3

temperatures (Supplementary Table 5). Across gradients, climate4

sensitivity was greater in wetter sites relative to drier sites as5

indicated by the number of days with precipitation and satellite-6

derived soil moisture (Fig. 3a,b). We found support for our first7

hypothesis: shrubs growing near their northern latitudinal or8

elevational range limits showed greater climate sensitivity, as did9

taller (>50 cm maximum canopy height) versus shorter species10

(<50 cm) (Fig. 3c,d). Overall, shrub climate–growth relationships11

were not uniform across the tundra biome, but instead varied12

according to soil moisture, species canopy height and geographic13

position within the species ranges.14

Our results highlight the importance of soil moisture as a driver15

of climate sensitivity of shrub growth. In tundra environments, soil16

moisture is influenced by several factors including rainfall during17

the summer, snow distribution, duration and melt, permafrost18

status, soil properties and topography, making it more challenging19

to quantify than climate variables24. We observed high climate20

sensitivity and positive climate–growth relationships at many sites21

with high soil moisture (Figs 1 and 3); however, eight sites exhibited22

negative summer temperature–growth relationships (Fig. 1) and23

some of these sites were located in areas with high soil moisture24

at the landscape scale (Supplementary Fig. 14). These negative25

relationships with summer temperatures could indicate drought26

limitation of growth in woody species, which can occur in both wet27

and dry landscapes25, although in sites with increasing soil moisture,28

standing water can also lead to reduced growth and shrub dieback6.29

Previous studies have identified summer temperatures as an30

important driver of vegetation change1,13,14,26, but the role of soil31

moisture is less often examined. A recent synthesis of two decades32

of ecological monitoring (the International Tundra Experiment33

Network) showed that increased shrub abundance was most 34

pronounced at sites that had experienced summer warming and 35

in wetter versus drier sites1. In addition, landscape-level studies 36

of shrub change in northern Alaska showed greater increases in 37

wet floodplains relative to well-drained hill slopes3,10. Our study, 38

using a new circumarctic dendroecological data set consisting of 39

almost exclusively di�erent sites from those in previous studies, also 40

demonstrates broad geographic patterns in the climate sensitivity 41

of shrub growth, with higher climate sensitivity at sites with 42

higher soil moisture. Taken together these results suggest that, with 43

continued warming11, potentially more variable precipitation11 and 44

uncertainty in the future soil moisture regime11,24, water availability 45

or flooding could play an increasingly important role in limiting 46

future shrub expansion.However, analyses of plantwater availability 47

in tundra ecosystems are limited by the lack of high-resolution soil 48

moisture data24. 49

In our study, climate sensitivity of shrub growth was greatest 50

at the northern or elevational range margins of individual species 51

(Fig. 3). Climate sensitivity of shrub growth was thus greatest at 52

the transition zone between tall and low shrub tundra (Fig. 1). 53

The largest ecosystem transitions in shrub dominance could occur 54

at these mid-arctic latitudes, rather than at the northern limits of 55

the tundra biome as a whole. The patterns of climate sensitivity 56

of growth in tundra shrub species can be compared to patterns 57

observed in treeline ecotones. Half of the latitudinal and elevational 58

treelines studied so far have advanced poleward or upslope, often 59

associated with warming27. Temperature sensitivity of tree growth 60

has been found to be highest at the upper or northern-most margin 61

of the forest–tundra transition zone20,27 and moisture sensitivity 62

to be highest at southern or lower range edges28. Our results 63

suggest that for tundra shrubs, both temperature and soil moisture 64

control growth at range edges, while further from the range 65

edge other factors such as
Q.8

competition, facilitation, herbivory and 66

disease21 may be more important. Herbivore densities vary spatially 67

and temporally across our study locations12,29, and this could be 68

one of the factors explaining the variation in climate sensitivity. 69

Relationships between the climatic and biotic factors influencing 70

growth are likely complex Q.9and deserve greater study. 71

We find that climate sensitivity of growth is greater for tall 72

shrubs, than for low-statured shrub species (Fig. 3b). This has 73

important implications for Earth system models, as changes in tall 74

shrub cover will contribute more markedly to ecosystem–climate 75

feedbacks than changes in dwarf shrub cover8. Increases in canopy 76

height and abundance of taller species relative to lower-stature shrub 77

species was a major finding of two recent syntheses of plot-based 78

ecological monitoring and passive warming experiments; however, 79

these studies did not include taller alder and willow species1,26. 80

Tall shrub species may more readily exploit favourable climate 81

conditions, particularly at the transition zone from tall to low shrub 82

tundra, by competing for limited light and nutrient resources30. 83

In particular, in contrast to previous work that has not explicitly 84

tested biogeographic patterns of climate sensitivity1, our analysis 85

demonstrates that the climate sensitivity of both tall and dwarf 86

shrub species was often greater towards range margins (Fig. 3a). 87

This results in an overall pattern of high climate sensitivity at mid- 88

latitudes by also Q.10for some species growing in the high Arctic (Fig. 1). 89

In conclusion, climate sensitivity of shrub growth is generally 90

high at sites across the tundra biome, which provides strong ev- 91

idence for the attribution of tundra shrub increases to climate 92

warming4. However, pronounced increases in shrub growth with 93

warming are unlikely to occur in all regions, and the greatest 94

shrub growth responses are instead likely to occur in the transition 95

zone between tall- and low-statured shrub tundra and where soil 96

moisture is not limiting. A pressing research question is whether 97

temperature-induced increases in shrub growth will continue to 98

occur at current or accelerated rates or whether factors such as 99
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Figure 3 | Climate sensitivity across gradients. a–d, Greater climate sensitivity was found for shrub species growing at sites with a greater number of wet
days (a), higher soil moisture (b), closer to northern/elevational range limits (c) and for species with higher maximum canopy heights (d). e,f, Climate
sensitivity varied among genera (e) and between the two growth measures of stem increments and annual ring widths (f). Climate sensitivity is indicated
by four metrics: 1) the di�erence in AIC value between the best climate model and a null model, 2) the R2 value for the best climate model, 3) the absolute
value of the slope of the best summer temperature model and 4) the proportion of individuals that had significant linear relationships between growth and
summer temperature variables. The lines and associated p values indicate beta regression of the di�erent climate-sensitivity metrics; the shaded areas
indicate the 90th quantile of these regressions. The distance to the range edge (c) is the distance between the sampling location and the northern or
elevation range edge for each species converted to relative latitudes (see Supplementary Information). This gives an index of how far a sample population
is located from the maximum extent of the distribution of that species either northward in the Arctic or upslope in alpine tundra.

water availability, herbivory, pathogen outbreaks, nutrient limita-1

tion or fire will play a greater role in limiting future tundra shrub2

expansion.

Q.11

Further experimental manipulations of temperature26,3

moisture regime, biotic interactions and atmospheric CO2 concen-4

tration are necessary to predict shrub growth responses under fu-5

ture environmental scenarios. Improved soil moisture records24 (re-6

sulting from, for example, ESA http://www.esa-soilmoisture-cci.org7

and NASA http://smap.jpl.nasa.gov) and other locally influenced 8

climate and biological variables and expanded networks of in situ 9

tundra vegetation observations1 will further improve predictions. 10

Only with a combination of enhanced ecological monitoring, 11

multifactorial experimentation and additional data synthesis can 12

we make improved projections of vegetation feedbacks to future 13

climate change. 14
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Methods1

Methods and any associated references are available in the online2

version of the paper.3
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Methods1

To examine climate sensitivity of tundra shrub growth, we assembled a database of2

37 arctic and alpine sites encompassing 25 species from 8 genera (Supplementary3

Tables 1 and 2) for a total of 46 genus-by-site combinations, 1,821 individual4

shrubs, and 41,576 yearly growth measurements. Growth measurements included5

annual ring widths (35 genus-by-site combinations) and stem increments (116

genus-by-site combinations). Although, data collection was not coordinated in7

advance and includes both published and unpublished data, the resulting data set8

represents many of the dominant and widely distributed shrub species found across9

the tundra biome.10

To test the correspondence between variation in climate and annual growth, we11

used monthly Climate Research Unit (CRU) TS3.21 gridded temperature and12

precipitation data (0.5� resolution, Supplementary Table 3). We found high13

correlations between the CRU TS3.21 and station data for the 19 sites with a14

meteorological station in relatively close proximity (Supplementary Table 4).15

We used linear mixed models (package nlme, R version 2.15.3) and 16

model selection including 33 candidate models of temperature and 17

precipitation variables to relate annual growth to climate (Supplementary 18

Tables 5 and 6). We analysed data from 1950 to 2010, the period with the 19

highest quality climate data and overlap between di�erent individual shrub 20

growth time series. 21

We present four di�erent indices of climate sensitivity for each genus-by-site 22

combination (see above and Supplementary Information). We considered the 23

overall climate sensitivity to be the comparison of the best model to a null model; 24

summer temperature sensitivity was a comparison of only the models containing a 25

summer temperature variable. We then compared the climate sensitivity of growth 26

to environmental and biotic gradients including wet day frequency, soil moisture, 27

distance to nearest range edge and the maximum potential canopy height for the 28

sampled species. Detailed methods describing the data and analyses that were used 29

are included in the Supplementary Information. 30
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