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Abstract. Empirical mode decomposition (EMD) has become a powerful tool for adaptive analysis of non-stationary 
and nonlinear time series. In this paper, we will perform a multi-scale analysis of the Central England Temperature and 
the proxy temperature from Greenland ice core time series by using EMD. We will make a significance test against the 
null hypothesis of red noise and determine both the dominant modes of variability and how those modes vary in time. 

Keywords: Empirical mode decomposition, Temperature time series, Significance test 

1. Introduction 

Climatic time series are nonlinear and nonstationary while most traditional time series analysis methods are only 
valid when applied to stationary time series [1-3, 15]. In order to tackle this issue, Huang [9] introduced Empirical Mode 
Decomposition (EMD) in 1998. Since then, EMD has become a widely used and powerful tool for adaptive analysis of 
non-stationary and nonlinear time series.  EMD algorithm is based on the direct extraction of the energy associated with 
various intrinsic time scales, the most important parameters of the system. Since EMD can decompose adaptively a time 
series into time-frequency space, we are able to determine both the dominant modes of variability in climatic time series 
and how those modes vary in time.  

In this study, we will examine two temperature time series which play a key role in climate change research. The 
first is the Central England Temperature time series [12]. The other is the Vinther's proxy Greenland winter temperature 

which is obtained by stable oxygen isotopic composition of ice, specifically the winter value of  data from 7 ice 

cores drilled in southern, western, eastern and central Greenland [8, 11, 16-18]. The isotopic ratio  measured in ice 
cores has long been established as a temperature proxy because of the temperature dependent fractionation of oxygen 
isotopes that takes place while moisture travels from its evaporation area to the Greenland ice sheet [8, 11, 16-18]. We 
will perform a multi-scale analysis for the Central England Temperature time series and the proxy Greenland winter 
temperature time series by using EMD method. After that, we will do a significance test against a suitable hypothesis 
for climate noise and determine the time variation in the dominant modes of Temperature Time Series. 

2. Empirical Mode Decomposition 

Huang’s Empirical mode decomposition (EMD) method [9-10] is based on the direct extraction of the energy 
associated with various intrinsic time scales. Since EMD makes full use of the local characteristic time scale of the data, 
it is suitable to be applied to nonlinear and non-stationary processes.  

The EMD method is motivated by the computation of instantaneous frequency defined in terms of the Hilbert 
transform. In detail, it decomposes a time series into a finite sum of intrinsic mode functions. Huang [9-10] showed that 
for a function to have physically meaningful instantaneous frequency, it should satisfy:  

(a)The number of the extrema and the number of the zero crossings  are equal or differ at most by one 
(b)At any point, the mean value of the envelopes defined by the local extrema is zero.  
Such a function is called an intrinsic mode functions (IMF).  
The algorithm for EMD is very simple. Consider a time series  . The rule to extract the first IMF from  is 

as follows: 
1)Find the upper envelope of  as the cubic spline interpolant of its local maxima, and the lower envelope, as the 

cubic spline interpolant of its local minima. 
2)Compute the envelope mean  as the average of the upper and lower envelopes. 
3)Compute  . 
4]If the sifting result  is an IMF, stop and let . Otherwise, treat  as a new time series and iterate 

on  through Steps 1-4. The stopping condition is 
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where  is the sifting result in the kth iteration, and SD is typically set between 0.2 and 0.3. Finally let 

. The EMD extracts the next IMF by applying the above procedure to the residue 

; 
where  denotes the first IMF. This process is repeated until the last residue  has at most one local extremum. 

The residue  characterizes the nonlinear trend of the time series. For climatic time series, then the residue reflects 
climate change trend.  Finally, we obtain 

 
Thus, we achieved a decomposition of the time series into IMFs and a residue which can be either the mean trend or 

a constant. 

3. EMD-based Significance Test 

The climate system is undoubtedly a multi-scale system where a multitude of vastly different time and space scales 
nonlinearly interact with each other. The EMD procedure allows for the analysis of non-stationary time series to extract 
physically meaningful intrinsic mode functions (IMFs) and nonlinear trends. In order to determine both the dominant 
modes of variability and how those modes vary in time, the significance of IMFs and trends should be tested against the 
null hypothesis of some climate noise. However, choice of noise model is crucial to reliable significance testing.  

For many geophysical phenomena, a plausible null hypothesis to test against is red noise [7]. A simple model for red 
noise is the univariate lag-1 autoregressive [AR(1)] process [4] as follows: 

 
where  is called AR(1) coefficient and  is independent Gaussian white noise with mean 0 and variance .  
For a given time series, one can use the following formula to estimate AR(1) coefficient and noise variance [1]: 

 

 
Where  

 
Based on these AR(1) estimators of the climatic time series, we can use the familiar Monta-Carlo method to do the 

significance test and discover the intrinsic feature in variability in the particular climate time series. That is, we will 
generate many realizations of the AR(1) model with the same AR(1) coefficient and noise variance as climatic time series. 
Then, by comparing the variances of each IMF of original climatic time series with that of multiple AR(1) model 
realizations, we can discover the dominant modes with significant variability and how those modes vary in time. 

Many statistical tests assume that the probability density function (pdf) is close to normal. Before one uses the EMD 
to make the significance test on typical climatic time series, one needs to transform the original time series such that the 
pdf of the transformed data is normal [13, 14]. The main reason for doing this in our study is because otherwise the 
normally distributed red noise null hypothesis we use is wrong.  So, if the data are not normalized, then the obtained 
dominant modes with significant variability will be misleading simply because the null-hypothesis can be trivially 
rejected. 

4. Applications 

We will examine two important temperature time series with the help of EMD, i.e., we will make a significance test 
against the null hypothesis of climate noise and determine both the dominant modes of variability and how those modes 
vary in time. 

 A.Greenland Winter Temperature Index.We will apply EMD method to the proxy Greenland Winter 
Temperature [11, 16-18].  We firstly transform the original time series such that the pdf of the transformed data is 
Normal. A practical way of doing this is by taking the inverse normal cumulative distribution function (cdf). Fig. 1 
shows the normalized Winter Greenland Temperature Index. After that, we do the EMD analysis for this normalized 
temperature time series. Fig. 2 displays all the IMFs and the residue in Empirical Mode Decomposition of the 
Normalized Greenland Winter Temperature index. 
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Fig. 1. Normalized Greenland Winter Temperature index 

 
Fig. 2. Empirical Mode Decomposition of Normalized Greenland Winter Temperature index 

 
Fig. 3. Statistical significance test for the normalized Greenland winter temperature index. 
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 The variances of each IMF and the residue in the EMD of Greenland winter temperature are marked by circle, while 
the dashed line denotes 95% percentiles of each IMF variance distribution of AR(1) process. The significant mode for 
Greenland Winter Temperature index is IMF 3. 

The statistical significance of the IMFs will be tested against a climate noise null hypothesis by using Monte-Carlo 
Method. First of all, we will estimate its AR(1) coefficient and noise variance. After that, we will generate 1000 
realizations of the AR(1) model with the same AR(1) coefficient and noise variance as Greenland winter temperature 
index. In Fig. 3, the variances of each IMF and the residue of Greenland winter temperature are marked by circle, while 
the dashed line denotes 95% percentiles of each IMF variance distribution of AR(1) process. The statistical significance 
test reveals that the 95% significant mode is IMF 3 for Greenland Winter Temperature index while the rest IMFs and the 
residue cannot be distinguished from a climate noise process. In the other words, IMF 3 reflects an intrinsic feature of 
Greenland Winter Temperature index.   

 
Fig. 4. Normalized Central England Temperature Index 

 
Fig. 5. Empirical Mode Decomposition of the Normalized Central England Temperature index 
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B. Central England Temperature index. 
We examine 1800-2000 Central England Temperature [12]. We will transform the original time series such that the 

pdf of the transformed data is Normal, as done for Greenland winter temperature (Fig. 4). After that, we decompose the 
Normalized Central England Temperature Index to six IMFs and one Residue. Fig. 5 displays all the IMFs and the 
residue in EMD analysis.  Finally, we use Monte-Carlo method to do the significance test.  Significance testing shows 
that the only significant mode in EMD analysis is the residue (Fig. 6). Since the residue reflects the temperature change 
trend, this shows that the climate in Central England has become significantly warmer since 1800. Fig. 5 shows that 
most of that warming has been through the 20th century.  
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Fig. 6. Statistical significance test for the normalized central England temperature index. The variances of each IMF 
and the residue in the EMD of the normalized Central England Temperature are marked by circle, while the dashed line 
denotes 95% percentiles of each IMF variance distribution of AR(1) process. The significant mode for Central England 
Temperature index is Residue. 
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